
C O N S T R A I N T A N D
A N S W E R S E T

P R O G R A M M I N G
francesco pinzauti

Abstract

The aim of this project is to solve a Constraint Satisfaction
Problem using both Answer Set Programming and MiniZinc. On
top of that a Python program was developed which allows the
user to automatically choose to solve the problem with one of
the two models. The user can also choose if the input should be
generated randomly or inserted manually. In the first case he has
control over some parameters of the problem (e.g. dimension of
the grid).

contents

1 The problem 2
2 Project structure 2

2.1 Tech stack . 2
2.2 How to run . 3

2.2.1 ASP . 3
2.2.2 MiniZinc . 4
2.2.3 Both . 4

3 ASP model 5
3.1 Generate . 5
3.2 Define . 5
3.3 Test . 6
3.4 Display . 7

4 MiniZinc model 8
4.1 Data structures . 8
4.2 Predicates . 9
4.3 Constraints . 10
4.4 Global constraints . 12

5 Conclusions 13
6 Benchmarks 14
References 15

1

1 the problem 2

1 the problem

The task is to construct non-crossing and non-overlapping paths that If you need further
details and an
example, you can
see the complete
assignment
explanation .

start from given numbered grid cells and meet each other in a single
cell. The paths can make horizontal and vertical transitions between
neighboring cells but must not pass numbered grid cells (except for their
origins). Most importantly, for each path, the number in its origin cell
prescribes the number of turns, that is, alternation between horizontal
and vertical transition or vice versa, the path has to make.

2 project structure

You can find the source code here and the source for the report here.
The file structure of the project is the following: In this section we

try to give a quick
look at the whole
project, please note
that if further
details are needed
all the code, both
the models and the
Python program, is
properly
documented.

src
asp ASP part of the project.

data..Input data.
input.lp..........User defined input for manual mode.
benchmark1.lp Benchmark instance.
...
benchmark30.lp..................Benchmark instance.

model.lp ASP model.
minizinc MiniZinc part of the project.

data..Input data.
input.dzn.........User defined input for manual mode.
benchmark1.dzn..................Benchmark instance.
...
benchmark30.dzn.................Benchmark instance.

model.mzn...............................MiniZinc model.
solver.mpc.................MiniZinc solver configuration.

main.py. Program entrypoint.
asp.py. Handles everything related to ASP.
mz.py................Handles everything related to MiniZinc.
Makefile..Define commands to setup and execute the project.
requirements.txt......Required packages to run the project.

2.1 Tech stack

Everything was developed, tested and executed on a local machine1.
The project is built using Python 3.10.2, which allows to manage the
ASP and MiniZinc models, the random instances and their solutions in
only one command line interface.

Clingo 5.5.2 and a Visual Studio Code extension was used for ASP.
All the project is built upon Clingo API [Pot22b], which was necessary

1 OEM: Xiaomi, OS: Windows 11 21H2, CPU: Intel Core i7-11370H, RAM: 16GB
DDR4, GPU: NVIDIA GeForce MX450.

17. Consider a grid puzzle as shown below on the left-hand side:

3 0 3)
2 2 4
5L X3 1

1 2 3 1 2 3

The task is to construct non-crossing and non-overlapping paths that start from given
numbered grid cells, having coordinates (1,1), (2,1), and (3.3) in this example, and
mect cach other in a single cell. The paths can make horizontal and vertical transitions
between neighboring cells but must not pass numbered grid cells (except for their origins)
Most importantly, for each path, the mumber in its origin cell prescribes the mumber of
turns, that is, alternation between horizontal and vertical transition or vice versa, the
path has to make. A corresponding solution is displayed on the right-hand side above,
Observe that the paths from cell (1,1) and (2,1) make one turn each at cell (1,2) or (3.1),
respectively, while the path from (3,3) makes no turn on its way to the common meeting
point (3.2).

The input format for AS

is of the form:

boardl (3) .

number (1,1,1) .
number (2,1,1) .
number (3,3,0) .

Choose your favourite input format for Minizinc.

The expected output is something of the kind

link(1,1,1,2). 1link(1,2,2,2).
1ink(2,2,3,2). 1ink(2,1,3,1).
1ink(3,1,3,2). 1ink(3,3,3,2).

https://github.com/pinzauti/automated-reasoning
https://github.com/pinzauti/automated-reasoning-report
https://www.python.org/downloads/release/python-3102/
https://github.com/potassco/clingo/releases/tag/v5.5.2
https://marketplace.visualstudio.com/items?itemName=abelcour.asp-syntax-highlight

2 project structure 3

in order to generate and solve random instances and to format the
output in an human readable way.

As far as MiniZinc goes the model was developed using MiniZinc
2.6.3 and MiniZinc IDE. Again, MiniZinc API [Min22a] was heavily
used in the main script.

In both cases Github Copilot assisted the development process. This
report is written using the Minted package for the source code and
Inkscape for creating the images.

2.2 How to run

First thing first you need to create a virtual environment and install
the required packages2. To do so just run the following commands: The packages

installed are,
peraphs
unsuprisingly,
clingo and
minizinc[dzn].

cd src/
make setup

If you want to know what you can do just type:

make help

We will however explain everything here.

2.2.1 ASP

Two modes are available: a random mode and a manual mode. The
random mode will generate a random instance and solve it. The manual
mode will allow you to define your own instance and solve it.

random mode If you want to use random mode you need to run
the following command:

make asp-random [d DIMENSION] [n NUMBER] [s SOLUTIONS]

you can choose the dimension of the board and the number of initial
points. However if you don’t want to the program will generate them
randomly for you; you can also decide to input only the dimension or
only the number of starting points. Note that a upper bound was set
on the dimension, both if you manually define it or if you don’t. Going
beyond that could lead to excessive execution time3. By default all
solutions will be displayed, if you want to display only a specific number
of solution specify it to the argument s.

All of this is managed by the asp_random() function in the main.py
file. It goes without saying that not all the randomly generated instances
will be solvable, and the program will communicate when those are not.

2 It will detect automatically if you are using Windows or Linux, no need to adjust
anything.

3 Why have you not used the –time-limit option? The API does not seem to support it.
However all the benchmarks in section 6 respect the 5 minutes time limit as required.

https://github.com/MiniZinc/libminizinc/releases/tag/2.6.3
https://github.com/MiniZinc/libminizinc/releases/tag/2.6.3
https://www.minizinc.org/ide/
https://copilot.github.com/
https://ctan.org/pkg/minted?lang=en
https://inkscape.org/
https://github.com/potassco/clingo/issues/151

2 project structure 4

manual mode If you want to use manual mode you need to run
the following command:

make asp-manual [s SOLUTIONS]

this will solve the problem with the input data that you should enter
in the file src/asp/data/input.lp. The s argument is the same as
explained above. All of this is managed by the asp_manual() function in
the main.py file. Some sanity checks on the user input are performed, but
it should still be reasonable in order to produce something meaningful
and in an acceptable time.

As anticipated the solutions will be printed in an human readable
way thanks to the function asp_prettier() located in the main.py file.

2.2.2 MiniZinc

Again, two modes are available: a random mode and a manual mode. If the program fails
try adding
MiniZinc
installation
location to your
PATH. More on
that here.

The parameters and the functioning are the same, however we briefly
present them.

random mode If you want to use random mode you need to run
the following command:

make minizinc-random [d DIMENSION] [n NUMBER] [s SOLUTIONS]

where d is the dimension of the board, n is the number of starting points
and s is the number of solutions to be displayed. All the parameters
are optional, if not inserted d and n will be randomly chosen by the
program, and all solution will be displayed.

manual mode If you want to use manual mode you should insert
the input data in the file src/minizinc/data/input.dzn and run the
following command:

make minizinc-manual [s SOLUTIONS]

where s is the number of solutions to be displayed.

2.2.3 Both

You can also solve both the ASP and the MiniZinc problems at the
same time, inserting the input data in the file src/asp/data/input.lp
and src/minizinc/data/input.dzn. The command is

make both [s SOLUTIONS]

where s as always is the number of solutions to be displayed.

https://github.com/MiniZinc/minizinc-python/issues/60

3 asp model 5

3 asp model

As explained in [Pot22a] an ASP model is divided in four part: generate,
define, test and display. As for the generate part our Python program
handles both the generation of the random instances in random mode
and the inclusion of the user defined input in manual mode.

3.1 Generate

The input is composed by n + 1 ground terms, with n the number of
starting points:

1 boardl(D).
2 number(X1, Y1, T1).
3 .
4 .
5 .
6 number(Xn, Yn, Tn).

where D is the dimension of the board and X_i, Y_i are the coordinates4

of the starting points. T is the number of turns each starting point has
to make in order to arrive to the intersection point.

3.2 Define

The define part is displayed below TLDR: There can
be only one
intersection point
(i.e. the goal) and
every two points in
the grid there can
or can’t be a link
between them. We
then define with
denials when those
links can exist.

1 grid(1..D, 1..D) :-boardl(D).
2 1 {goal(X,Y): grid(X,Y)} 1.
3

4 {link(start(X1, Y1), end(X2, Y2)) : grid(X1,Y1),
grid(X2,Y2), |X1 - X2| + |Y1 - Y2| = 1}.↪→

5

6 connected(start(X1,Y1) ,end(X2,Y2)) :- link(start(X1,Y1),
end(X2,Y2)).↪→

7 connected(start(X1,Y1), end(X2,Y2)) :-
connected(start(X1,Y1), end(Z1,Z2)),
link(start(Z1,Z2),end(X2,Y2)).

↪→

↪→

In line 1 we have a rule for defining the predicate grid, i.e. a matrix
of dimension DxD. The goal point, i.e. the intersection point of our
links is defined in line 2: this has to be one and has of course to be part
of the grid. On line 4 we have a rule for defining the predicate link,
which is the connection between two points of the grid, this connection

4 From now on we represent column position with X and row position with Y . Even
in the Python script, when a point is labelled as (X, Y) we are referring to columns
and row. This is rather unusual, but necessary in order to be consistent with the
notation of the problem assigned.

3 asp model 6

can take place or not and can’t be diagonal but only horizontal and
vertical. Note the use of the predicates start and end which serves
the scope to give directionality to the links. On line 6 we have the
connected predicate, defined recursively on the definition of link, and
it is the predicate that checks if two points are connected.

3.3 Test

Let us start describing the first denials:

1 :- #count{grid(X,Y): number(X,Y, _)} < 2.
2

3 :- goal(X, Y), number(X, Y, _).
4

5 :- goal(X, Y), not connected(start(X0, Y0), end(X,Y)),
number(X0,Y0, _).↪→

In line 1 we impose the number of starting point to be at least 2. In
line 3 we impose that the goal point must not be a starting point. In
line 5 we impose that the goal point must be connected to a starting
point.

1 :- link(_, end(X0, Y0)), number(X0, Y0, _).
2

3 :- link(start(X,Y), _), not link(_, end(X,Y)), not
number(X,Y, _).↪→

4

5 :- link(_, end(X,Y)), not link(start(X,Y), _), not goal(X,
Y).↪→

In line 1 we impose that no link can end in a starting point. In line 3
we impose that a link can start in a point only if in that point another
link ends or if it is the starting point. In line 5 we impose that a link
can end in a point only when in that point another link starts or if it is
the goal. Please note that

some of the denials
here are partially
redundant, however
as stated
in [Pot22a] and as
verified
experimentally
often adding more
denials, even if
overlapping, results
in a better
performance.

1 :- link(start(X, Y),end(X1, Y1)), link(start(X, Y),
end(X2, Y2)), X1 != X2.↪→

2

3 :- link(start(X, Y),end(X1, Y1)), link(start(X, Y),
end(X2, Y2)), Y1 != Y2.↪→

4

5 :- link(start(X1, Y1),end(X, Y)), link(start(X2, Y2),
end(X, Y)), X1 != X2, not goal(X,Y).↪→

6

7 :- link(start(X1, Y1),end(X, Y)), link(start(X2, Y2),
end(X, Y)), Y1 != Y2, not goal(X,Y).↪→

3 asp model 7

In line 1 and 3 we impose that there can not be two links from one
starting point. In line 5 and 7 we impose that two links can’t end in
the same point (i.e. there can not be intersections) if the point is not
the goal.

1 :- link(start(X1, Y1), end(X2, Y2)), link(start(X2,Y2),
end(X1, Y1)).↪→

2

3 :- link(_, end(X1,Y1)), not connected(start(X1,Y1), end(X,
Y)), goal(X, Y), not goal(X1,Y1).↪→

In line 1 we impose that a link can not end when it starts. In line 3
we impose that a link have to be connected to the goal. All together,
we are avoiding loops.

1 :- #count{grid(X2,Y2), grid(X3, Y3): link(start(X1, Y1),
end(X2, Y2)), link(start(X2, Y2), end(X3, Y3)),
|X1-X3| = 1, |Y1-Y3| = 1, connected(start(X0, Y0),
end(X1, Y1));

↪→

↪→

↪→

2 grid(X1,Y1), grid(X2, Y2): link(start(X0, Y0), end(X1,
Y1)), link(start(X1, Y1), end(X2, Y2)), |X0-X2| = 1,
|Y0-Y2| = 1} != T, number(X0, Y0, T).

↪→

↪→

Finally we impose, using the aggregate #count, that for each path
from each starting point to the goal the number of turns should be the
one prescribed. We do that by checking two consecutive links connecting
three points, if the difference between the x-axis and y-axis coordinates
of the first and third cell is both 1, then we have a turn.

Note that we make use of pooling in order to consider two cases: the
first case is when the turn is made by a a triple of cells where none of
them is a starting point (but they must be obviously connected to it),
the second case is when the turn is made by a triple directly containing
a starting point.

3.4 Display

Finally with the last two lines we display our solution, hiding everything
except the goal and the link towards it. The output format is:

1 link(X1, Y1, X2, Y2).
2 .
3 .
4 .
5 link(Xn−1, Yn−1, Xn, Yn).

where link is the predicate defined in 3.2 which describes the links
between points. All the links together describe the path from the
starting points to the intersection point.

4 minizinc model 8

4 minizinc model

The approach taken with MiniZinc is completely different. Data struc-
tures used to represent the same data and relations are different, input
and output format are completely different.

4.1 Data structures

Let us introduce everything with order:

1 par int: dimension; set of int: D = 1..dimension;
2 par int: number; set of int: N = 1..number;
3 array[N, 1..3] of par 0..dimension: starting_points;
4 array[D, D, 1..2] of var 0..12: Board;

On line 1 we define the dimension of the board as a parameter named
dimension, and a set of integers D on top of that. Then, on line 2, we
define also the number of starting points5 and again a set of integers
N on top of that. On line 3 we define the matrix starting_points,
which has the following input format:

1 starting_points = [|X1, Y1, T1

2 ...
3 |Xn, Yn, Tn|];

with n the number of starting points and each line representing, in order,
the X, Y coordinates of a starting point and the number of turns it has
to make in order to arrive to the goal.

Finally, on line 4, we define the multidimensional array of variables
Board. Board is of size DxD and has two dimensions: the first one
will store in each position one of the possible elements among the one
represented in figure 1.

The second dimension of the board will keep track of which path6

each cell belongs to, this is necessary, as we will se later, in order to
constraint the number of turns each path has to make.

Below you see the output of Board for the assignment example7:
Board[i,j,1]:

0 0 12
4 5 9
12 12 1

5 This is something not necessary in ASP, but it is necessary in MiniZinc as we are
using a multidimensional array to represent the starting points and MiniZinc does
not support dynamically sized arrays.

6 We have one path for each starting point, all paths intersect in one single point at
the end.

7 The second dimension of the Board is actually hidden in the output as not really
relevant and only useful for internal checks. However if you want to show it it is
sufficient to replace show(Board[i,j,1]) | i,j in D with show(Board[i,j,t]) |
t in 1..2, i,j in D.

4 minizinc model 9

Board[i,j,2]:

0 0 3
1 1 4
1 2 2

Note that the cell labelled, in the second dimension of the board, as
number + 1 (in this example 4) is the cell containing the intersection
of all the paths.

Turn cells

Straight cells

Intersection cells

Starting cell

Figure 1: First dimension of Board. Each number corresponds to the element
represented.

4.2 Predicates

We start defining the predicates t_cells(i,j), b_cells(i,j), l_cells(i,j)
and r_cells(i,j). These predicates defines the possible cells, again
among the ones in figure 1, that we can find on the top, on the bottom,

4 minizinc model 10

on the left and on the right of another cell. Let us take an example of
one of this predicate:

1 predicate t_cells(int: i, int: j) =
2 (Board[i-1, j, 1] = 2 \/ Board[i-1, j, 1] = 4 \/

Board[i-1, j, 1] = 6 \/ Board[i-1, j, 1] = 8 \/
Board[i-1, j, 1] = 9 \/ Board[i-1, j, 1] = 10 \/
Board[i-1, j, 1] = 11);

↪→

↪→

↪→

On top of that we build the predicates top(i,j), bottom(i,j),
left(i,j) and right(i,j). Let us again take an example of one of
those predicates:

1 predicate top(int: i, int: j) =
2 i-1 > 0 /\
3 (t_cells(i,j)\/ Board[i-1, j, 1] = 12) /\
4 (Board[i-1, j, 2] != number + 1 -> (Board[i, j, 2] =

Board[i-1, j, 2] \/ Board[i, j, 2] = number + 1));↪→

We are in position i, j and we want to state the possible elements on
top of that cell. First of all we check to be still inside the board, i.e. that
the position i − 1 is greater than zero. Then we proceed allowing all the
cells that can be connected on top and this is done in t_cells(i,j).
This was for the first dimension of the board. As far as the second
dimension we check that the connected cell is not an intersection cell,
the intersection cell is labelled on the second board with the number
dimension + 1. If it is not we require the cell (i, j) to be on the same
path of the connected cell, which in this case is the cell (i-1, j), or the
be an intersection cell. In this way we keep track of each path, and
allow them to end in the same point.

4.3 Constraints

We shall start placing in each starting point a cell of type 12 (again,
according to figure 1 which from now on will be taken as reference when
stating any cell number). Note that in order to be as consistent as
possible with the ASP model we have to adapt the peculiar notation
of the assignment (i.e. inverse row index, column and row notation
inverted) to the MiniZinc notation. The following code does so:

1 forall(n in N)(
2 if starting_points[n,2] = 1 then Board[dimension,

starting_points[n,1], 1] = 12 /\ Board[dimension,
starting_points[n,1], 2] = n

↪→

↪→

3 elseif
4 starting_points[n,2] = dimension then Board[1,

starting_points[n,1], 1] = 12 /\ Board[1,
starting_points[n,1], 2] = n

↪→

↪→

5 else

4 minizinc model 11

6 Board[dimension - starting_points[n,2] + 1,
starting_points[n,1], 1] = 12 /\ Board[dimension -
starting_points[n,2] + 1, starting_points[n,1], 2] = n

↪→

↪→

7 endif
8)

In the first dimension of the board we place the number 12 while in
the second dimension we label each starting point with a number, this
number will define each path on the board.

We proceed now using the predicates of 4.2 in order to define which
moves are allowed for each type of cell.

1 forall(i,j in D)(
2 (Board[i, j, 1] = 1 -> left(i,j) /\ top(i,j)) /\
3

4 ...
5

6 (Board[i, j, 1] = 12 -> top(i,j) \/ bottom(i,j) \/
right(i,j) \/ left(i,j))↪→

7)

We reported only two examples, the cell 1 allow to move on the left
and on top, while the starting point cell allows to move everywhere. All
the other cells allowed moves are properly defined.

Another constraint that we impose (and the code of which we omit,
as it is quite trivial) is that if a cell is empty in the first dimension
of the board it should be the same even in the second dimension and
viceversa.

In addition we impose that on the second dimension of the board
there can’t be numbers (i.e. paths) greater than number + 1.

The last constraint avoid multiple paths from a single starting point,
we partially show it below:

1 forall(i,j in D where Board[i,j,1] = 12) (
2 if top(i,j) then if i+1 <= dimension then not b_cells(i,j)

endif /\ if j-1 > 0 then not l_cells(i,j) endif /\ if
j+1 <= dimension then not r_cells(i,j) endif

↪→

↪→

3

4 ...
5

6 elseif right(i,j) then if i-1 > 0 then not t_cells(i,j)
endif /\ if i+1 <= dimension then not b_cells(i,j)
endif /\ if j-1 > 0 then not l_cells(i,j) endif

↪→

↪→

7 else true endif
8)

4 minizinc model 12

4.4 Global constraints

The following global constraints were used:

among: predicate among(var int: n, array [$X] of var int:
x, set of int: v) Requires exactly n variables in x to take one
of the values in v.

count eq: predicate count_eq(array [$X] of var int: x, var
int: y, var int: c) Constrains c to be the number of occur-
rences of y in x.

The use of let expression was also required, we report the syntax below:

<let-expr> ::= "let" "{" <let-item> ";" ... "}" "in"
<expr>↪→

<let-item> ::= <var-decl-item>
| <constraint-item>

Let us explain how global constraints were used starting with:

1 let {array[D,D] of var 0..12: MoveBoard; constraint
forall(i,j in D) (MoveBoard[i,j] = Board[i,j, 1]);} in↪→

2 if number = 2 then
3 among(0, MoveBoard, 7..11)
4 elseif number = 3 then
5 among(1, MoveBoard, 7..10) /\ count_eq(MoveBoard, 11, 0)
6 elseif number = 4 then
7 count_eq(MoveBoard, 11, 1) /\ among(0, MoveBoard, 7..10)
8 else
9 false

10 endif

Here we require that, depending on the number of starting points, there
should be a certain type of intersection cells, e.g. if we have four starting
points we need a single interception cell, the number 11. And so on and
so forth for the other cases.

We proceed now with three brief constraints: Some of those
constraints could
seem redundant,
but for how the
predicates in
section 4.2 were
defined they turned
to be necessary.

1 forall (n in N)(
2 let {array[D,D] of var 0..12: MoveBoard; constraint

forall(i,j in D) (if Board[i,j,2] = n then
MoveBoard[i,j] = Board[i,j, 1] else MoveBoard[i,j] = 0
endif);} in

↪→

↪→

↪→

3 among(starting_points[n,3], MoveBoard, 1..4)
4)

Here we require each path to do the prescribed number of turns: the
number of turns for each starting point is stored in the third column of

5 conclusions 13

starting_points and the moves from 1 to 4 are, according to figure 1,
the turning cells.

1 let {array[D,D] of var 0..12: PathsBoard; constraint
forall(i,j in D) (PathsBoard[i,j] = Board[i,j,2]);} in↪→

2 count_eq(PathsBoard, number + 1, 1)

Here we impose that there has to be one and only one intersection point
(i.e. point labelled as number + 1).

1 let {array[D,D] of var 0..12: MoveBoard; constraint
forall(i,j in D) (MoveBoard[i,j] = Board[i,j,1]);} in↪→

2 count_eq(MoveBoard, 12, number)

Then with the last constraint we impose the number of starting cells
(i.e. cells labelled with 12 in the first dimension of the board) to be
exactly the same as the number of starting points.

5 conclusions

The following configuration was used for MiniZinc: MiniZinc solver
configuration can
be found in
src/ minizinc/
solver. mpc .

solver: Chuffed 0.10.4

number of solutions: All solutions

optimization level: -O0 (no optimization)

time limit: 300 s

annotations: int_search(Board, first_fail, indomain_median)
satisfy;

This set of choices was the result of a series of experiments on both
small and large instances. As a result this was the combination of
parameters that seems to perform better for this specific problem.

As we will see in section 6 a set of 30 istances were created and
solved. Keep in mind that not all results were manually checked for
their correctness, only the ones with dimension of the Board equal to 3;
however the equal number of solutions between ASP and MiniZinc of
each instance was taken as a good indicator of the correctness of the
models.

The order of magnitude of execution times is way below the one
required, this is intended, as it was considered meaningless to go above
a reasonable dimension of the board.

ASP is, as expected, considerably faster than MiniZinc, but not in all
cases: when the number of solutions increases the difference between
the two solvers decreases until MiniZinc seems to actually outperform
ASP.

6 benchmarks 14

It must be however noted that given the almost negligible deltas
between execution times, most of the differences between the instances
can be attributed to statistical fluctuation and/or different performance
of the system at different times.

6 benchmarks
All the instances
were randomly
generated by the
Python script.

You can find all the benchmark instances in the src/minizinc/data
folder and src/asp/data folder. We briefly report an overview of the
performance on the table below.

Benchmark instances
Dimension Starting

points
Minizinc
Time

ASP
Time

Solutions

1 3 2 506 ms 5 ms 4
2 3 2 516 ms 16 ms 3
3 3 3 367 ms 4 ms 1
4 3 3 350 ms 8 ms 1
5 3 3 369 ms 7 ms 1
6 4 2 363 ms 13 ms 3
7 4 2 567 ms 105 ms 41
8 4 2 566 ms 121 ms 35
9 4 3 652 ms 20 ms 1
10 4 3 626 ms 19 ms 4
11 4 3 650 ms 20 ms 2
12 4 3 599 ms 22 ms 3
13 4 4 585 ms 27 ms 1
14 4 4 565 ms 15 ms 1
15 4 4 522 ms 13 ms 2
16 5 2 412 ms 185 ms 8
17 5 2 774 ms 852 ms 66
18 5 2 391 ms 89 ms 36
19 5 3 425 ms 66 ms 9
20 5 3 379 ms 31 ms 3
21 5 3 715 ms 35 ms 2
22 5 3 876 ms 96 ms 5
23 5 4 707 ms 50 ms 1
24 5 4 573 ms 41 ms 1
25 5 4 554 ms 60 ms 1
26 6 2 897 ms 3483 ms 80
27 6 3 810 ms 509 ms 15
28 6 3 702 ms 193 ms 3
29 6 4 840 ms 155 ms 2
30 6 4 673 ms 141 ms 1

6 references 15

references

[Cor+22] Thomas H. Cormen et al. Introduction to Algorithms, 4th
Edition. MIT Press, 2022.

[Dov16] Agostino Dovier. Answer Set Programming (ASP) e la codi-
fica dei rompicapi. May 2016.

[Kje22] H̊akan Kjellerstrand. MiniZinc solved problems. http://
www.hakank.org/minizinc/. 2022.

[Min22a] MiniZinc. MiniZinc Python — MiniZinc Python 0.6.1 docu-
mentation. 2022.

[Min22b] MiniZinc. The MiniZinc Handbook — The MiniZinc Hand-
book 2.5.5. 2022.

[Pot22a] Potassco. An introduction to our Answer Set Programming
tools focusing on gringo, clingo, and clasp. 2022.

[Pot22b] Potassco. Clingo API documentation. 2022.

http://www.hakank.org/minizinc/
http://www.hakank.org/minizinc/

	The problem
	Project structure
	Tech stack
	How to run
	ASP
	MiniZinc
	Both

	ASP model
	Generate
	Define
	Test
	Display

	MiniZinc model
	Data structures
	Predicates
	Constraints
	Global constraints

	Conclusions
	Benchmarks
	References

